
ApproxIoT: Approximate Analytics for Edge Computing

Zhenyu Wen∗, Do Le Quoc†, Pramod Bhatotia∗, Ruichuan Chen‡, Myungjin Lee∗
∗University of Edinburgh †TU Dresden ‡Nokia Bell Labs

Abstract—IoT-enabled devices continue to generate a massive
amount of data. Transforming this continuously arriving raw
data into timely insights is critical for many modern online
services. For such settings, the traditional form of data analytics
over the entire dataset would be prohibitively limiting and
expensive for supporting real-time stream analytics.

In this work, we make a case for approximate computing for
data analytics in IoT settings. Approximate computing aims for
efficient execution of workflows where an approximate output is
sufficient instead of the exact output. The idea behind approxi-
mate computing is to compute over a representative sample in-
stead of the entire input dataset. Thus, approximate computing —
based on the chosen sample size — can make a systematic trade-
off between the output accuracy and computation efficiency.

This motivated the design of APPROXIOT— a data analytics
system for approximate computing in IoT. To realize this idea,
we designed an online hierarchical stratified reservoir sampling
algorithm that uses edge computing resources to produce ap-
proximate output with rigorous error bounds. To showcase the
effectiveness of our algorithm, we implemented APPROXIOT
based on Apache Kafka and evaluated its effectiveness using a
set of microbenchmarks and real-world case studies. Our results
show that APPROXIOT achieves a speedup 1.3×—9.9× with
varying sampling fraction of 80% to 10% compared to simple
random sampling.

I. INTRODUCTION

Most modern online services rely on timely data-driven
insights for greater productivity, intelligent features, and higher
revenues. In this context, the Internet of Things (IoT) — all
of the people and things connected to the Internet — would
provide important benefits for modern online services. IoT is
expected to generate 508 zettabytes of data by 2019 with
billions of new smart sensors and devices [1]. Large-scale
data management and analytics on such “Big Data” will be
a massive challenge for organizations.

In the current deployments, most of this data management
and analysis is performed in the cloud or enterprise datacen-
ters [2]. In particular, most organizations continuously collect
the data in a centralized datacenter, and employ a stream pro-
cessing system to transform the continuously arriving raw data
stream into useful insights. These systems target low-latency
execution environments with strict service-level agreements
(SLAs) for processing the input data stream.

Traditionally, the low-latency requirement is usually
achieved by employing more computing resources and paral-
lelizing the application logic over the datacenter infrastructure.
Since most stream processing systems adopt a data-parallel
programming model such as MapReduce, almost linear scala-
bility can be achieved with increased computing resources.
However, this scalability comes at the cost of ineffective
utilization of computing resources and reduced throughput of
the system. Moreover, in some cases, processing the entire
input data stream would require more than the available

computing resources to meet the desired latency/throughput
guarantees. In the context of IoT, transferring, managing, and
analyzing large amounts of data in a centralized enterprise
datacenter would be prohibitively expensive [3].

In this paper, we aim to build a stream analytics system to
strike a balance between the two desirable but contradictory
design requirements, i.e., achieving low latency for real-time
analytics, and efficient utilization of computing resources. To
achieve our goal, we propose a system design based on approx-
imate computing paradigm that explores a novel design point
to resolve this tension. In particular, approximate computing
is based on the observation that many data analytics jobs are
amenable to an approximate rather than the exact output [4],
[5]. For such workflows, it is possible to trade the output
accuracy by computing over a subset instead of the entire data
stream. Since computing over a subset of input requires less
time and computing resources, approximate computing can
achieve desirable latency and computing resource utilization.

Furthermore, the heterogeneous edge computing resources
have limited computational power, network bandwidth, stor-
age capacity, and energy constraints [3]. To overcome these
limitations, the approximate computing can be adapted to
the available resources through trading off the accuracy and
performance, while building a “truly” distributed data analytics
system over IoT infrastructures such as mobile phones, PCs,
sensors, network gateways/middleboxes, CDNs, and edge dat-
acenters at ISPs.

We design and implement APPROXIOT to realize our vision
for a low-latency and resource-efficient stream analytics sys-
tem based on the above key observations. APPROXIOT recruits
the aforementioned edge computing nodes and creates a stream
processing pipeline as a logical tree (Figure 1). A data stream
traverses over the logical tree towards a centralized cloud or
datacenter where the data analysis queries are executed. Along
the route to the central location, each node independently
selects data items from the input stream while preserving
statistical characteristics. The core of APPROXIOT’s design is
a novel online sampling algorithm that updates the significance
(weight) of those selected data items on each node without any
cross-node synchronization. The system can tune the degree
of sampling systematically, depending on resource availability
and analytics requirements.

Overall, this paper makes the following key contributions.
• Approximate computing for IoT-driven stream ana-

lytics. We make a case for approximate computing in
IoT, whereby the real-time analysis over the entire data
stream is becoming unsustainable due to the gap between
the required computing resources and the data volume.

• Design and implementation of APPROXIOT (§III and
§IV). We design the core algorithm of APPROXIOT—

...

Sample sizes

Edge

nodes

Inter-continental

network

WAN

network

WAN

network

Continental

computing node

(Sampling node)

Central

Computing

Datacenter

Analyst

Data stream

Regional edge

computing node

(Sampling node)

Sample sizes

Output
Query

and

budget

Fig. 1. System overview.

weighted hierarchical sampling — based on theoreti-
cal foundations. The algorithm needs no coordination
across nodes in the system, thereby making APPROXIOT
easily parallelizable and hence scalable. Moreover, our
algorithm is suitable to process different types of input
streams such as long-tailed streams and uniform-speed
streams. We prototype APPROXIOT using Apache Kafka.

• Comprehensive evaluation of APPROXIOT (§V and
§VI). We evaluate APPROXIOT with synthetic and real-
world datasets. Our evaluation results demonstrate that
APPROXIOT outperforms the existing approaches. It
achieves 1.3×—9.9× higher throughput than the native
stream analytics execution, and 3.3×—8.8× higher ac-
curacy compared to a simple random sampling scheme.

II. OVERVIEW AND BACKGROUND

A. System Overview

APPROXIOT builds on two design concepts: hierarchical
processing and approximate computing. In APPROXIOT, a
wide variety of devices or sensors (so-called IoT devices)
generate and send data streams to regional edge computing
nodes geographically close to themselves. The edge computing
clusters managed by local ISPs or content providers sample
only a subset of the input data streams and forward them
to larger computing facilities such as datacenters. The data
streams, again sampled at the datacenters, can be further
forwarded to a central location, where a user-specified query
is executed and the query results are produced for global-level
analysis. These computing clusters spread across the globe
form a logical stream processing pipeline as a tree, which is
collectively called APPROXIOT. Figure 1 presents the high-
level structure of the system.

The design choice of APPROXIOT, i.e., combining ap-
proximate computing and hierarchical processing, naturally
enables the processing of the input data stream within a
specified resource budget. On top of this feature, APPROXIOT
produces an approximate query result with rigorous error
bounds. In particular, APPROXIOT designs a parallelizable
online sampling technique to select and process a subset of
data items, where the sample size can be determined based on
the resource constraints at each node (i.e., computing cluster),
without any cross-node coordination.

Altogether, APPROXIOT achieves three goals.

• Resource efficiency. APPROXIOT utilizes computing and
bandwidth resources efficiently by sampling data items
at each individual node in the logical tree. If we were
to sample data items only at a node where the query
is executed, all the computing and bandwidth resources
used to process and forward the unused data items would
have been wasted.

• Adaptability. The system can adjust the degree of sam-
pling based on resource constraints of the nodes. While
the core design is agnostic to the ways of choosing the
sample size, i.e., whether it is centralized or distributed,
this adaptability ensures better resource utilization.

• Transparency. For an analyst, the system enables com-
putation over the distributed data in a completely trans-
parent fashion. The analyst does not have to manage
computational resources; neither does she require any
code changes to existing data analytics application/query.

B. Technical Building Blocks

APPROXIOT relies on two sampling techniques as the build-
ing blocks: stratified sampling [6] and reservoir sampling [7]
because the properties of the two allow APPROXIOT to meet
its needs.

1) Stratified Sampling: A sub-stream is the data items
from a source. In reality, sub-streams from different data
sources may follow different distributions. Stratified sampling
was proposed to sample such sub-streams fairly. Here, each
sub-stream forms a stratum; if multiple sub-streams follow
the same data distribution, they can be combined to form a
stratum. For clarity and coherence, hereafter, we still use sub-
stream to refer to a stratum.

Stratified sampling receives sub-streams from diverse data
sources, and performs the sampling (e.g., simple random
sampling [8] or other types of sampling) over each sub-
stream independently. In doing so, the data items from each
sub-stream can be fairly selected into the sample. Stratified
sampling reduces sampling error and improves the precision
of the sample. It, however, works only in a situation where it
can assume the knowledge of the statistics of all sub-streams
(e.g., each sub-stream’s length). This assumption on prior
knowledge is unrealistic in practice.

2) Reservoir Sampling: Reservoir sampling is often used to
address the unrealistic assumption aforementioned in stratified
sampling. It works without the prior knowledge of all the sub-
streams. Suppose a system receives a stream consisting of an
unknown number of data items. Reservoir sampling maintains
a reservoir of size R, and wants to select a sample of (at
most) R items uniformly at random from the unbounded data
stream. Specifically, reservoir sampling keeps the first-received
R items in the reservoir. Afterwards, whenever the i-th item
arrives (i > R), reservoir sampling keeps this item with
probability of N/i and then randomly replaces one existing
item in the reservoir. In doing so, each data item in the
unbounded stream is selected into the reservoir with equal
probability. Reservoir sampling is resource-efficient; however,
it could mutilate the statistical quality of the sampled data

Sub-stream, S1

1 24 2 3

Reservoir sampling with size, N = 3

W
out

1 = W
in

1 * 4 / 3 = 4 W
out

1 = W
in

1 = 2

S2

1 2 3 4W
in

1 = 3 1 2 3 4W
in

1 = 3 1 2W
in

2 = 2 1 2W
in

2 = 2

Node

Upper-node or query execution module

Fig. 2. Basic operation at a node.

items in the reservoir especially when the input data stream
combines multiple sub-streams with different distributions. For
example, the data items received from an infrequent sub-
stream could easily get overlooked in reservoir sampling.

III. DESIGN

In this section, we describe the design of APPROXIOT.
We first present the basic operation conducted at individual
nodes (§III-A). We then discuss how the APPROXIOT system
is put together with those nodes (§III-B). We also detail the
statistics computation method (§III-C) and the error estimation
mechanism (§III-D). Finally, we discuss a design extension to
enhance the proposed system (§III-E).

A. Basic Operation: Weighted Hierarchical Sampling

The crux of APPROXIOT is the weighted hierarchical
sampling algorithm that runs independently on each node
and selects a portion from all sub-streams for the sample,
without neglecting any single sub-stream. These properties
make the algorithm simple and allow it to capture the statistical
significance of all sub-streams regardless of their sizes, for
which we extend the existing stratified reservoir sampling [9].

Algorithm 1 outlines the weighted hierarchical sampling on
a node. The node first stratifies the input stream into sub-
streams according to their sources (line 5). It then determines
the reservoir size for each sub-stream (line 7), where N
denotes a map for the reservoir sizes of all sub-streams. Given
Ni for sub-stream Si, the node selects items at random from
Si through the traditional reservoir sampling (line 10). The
reservoir sampling ensures that the number of selected items,
ci, from Si does not exceed its sample size Ni. Then, a local
weight (wi) for the items selected from Si is:

wi =

{
ci/Ni if ci > Ni

1 if ci ≤ Ni
(1)

Given the input weight (W in
i) for Si, the node finally

computes an output weight (lines 12-18) as follows:

W out
i =

{
W in
i ∗ wi if ci > Ni

W in
i if ci ≤ Ni

(2)

This process repeats across all sub-streams. Finally, we
return the final weight and sample maps (line 20). Figure 2
illustrates how a node applies the reservoir sampling and
updates the weight for each sub-stream.

Algorithm 1: : Weighted hierarchical sampling
Input:
items: input data items
sampleSize: size of sample
W in: weight map from downstream nodes

1 WHSamp(items, sampleSize, W in)
2 // sample: set of items sampled within a time interval
3 sample ← ∅
4 // Update S, a set of sub-streams seen so far within the interval
5 S ← Update(items)
6 // Decide the sample size for each sub-stream
7 N ← getSampleSize(sampleSize, S)
8 forall the Si ∈ S do
9 ci ← |Si| // Si: sub-stream i

10 samplei ← RS(Si, Ni) // Reservoir sampling
11 // Compute the weight of samplei according to Equation 1
12 if ci > Ni then
13 wi ← ci

Ni

14 W out
i ←W in

i ∗ wi // update weight of Si

15 end
16 else
17 W out

i ←W in
i

18 end
19 end
20 return W out, sample

B. Putting It Together

Algorithm 2 presents the overall workflow of APPROXIOT.
The algorithm running at each node takes the resource budget
and parent as input, while that of a root node additionally
accepts a user-specified streaming query. A number of sources
generate data items and continuously push them in a streaming
fashion through a pre-configured logical tree. Each node in
the tree samples data items on a sub-stream basis, based on
a specified resource budget. We currently assume there exists
a cost function which translates a given query budget (such
as the user-specified latency/throughput/accuracy guarantees)
into the appropriate sample size for a node in the logical tree.
Thereafter, each node (denoted as sampling node in Figure 1)
forwards those sampled sub-streams associated with a small
amount of metadata to an upper node towards a root node.
For sub-streams arriving at the root, the root conducts the
sampling of sub-streams, executes the query on the data items,
and outputs the query results alongside rigorous error bounds.

As shown in Algorithm 2, for each time interval, a node
conducts the following steps.

It first derives the sample size (size) based on the given
resource budget (line 3). It then extracts Ψ, a store that keeps
pairs of the metadata (i.e., weight map) and data items for
sub-streams that arrive within the interval (line 4). The weight
map maintains an up-to-date weight value for each sub-stream.
After obtaining a pair of weight map (W in) and data items in
Ψ (line 7), the node runs our weighted hierarchical sampling
(WHSamp), and returns the output weight map, W out, and the
sampled sub-streams (line 10). If the node is a sampling node
(i.e., it has a parent node), then the node sends the sample
and W out to its parent node (line 13). Otherwise, it stores the
pair of weight map and sampled items in a temporary data
structure, Θ (line 16).

Once the store Ψ is completely consumed, the root node

Algorithm 2: : APPROXIOT’s algorithm overview
Input:
query: streaming query (only for root)
budget: resource budget to execute the query
parent: successor node

1 begin
2 foreach interval do
3 size ← costFunction(budget)
4 Ψ← getDataStream(interval)
5 while Ψ is not empty do
6 // W in: Input weight map for sub-streams
7 {W in, items} ← getDataSet(Ψ)
8 // Weighted Hierachical Sampling (§III-A)
9 // W out: a map of weights of the sample

10 {W out, sample} ← WHSamp(items, size, W in)
11 if parent is not empty then
12 // (weight, sample) to upstream node
13 Send(parent, W out, sample)
14 end
15 else
16 Θ← Θ∪{(W out, sample)}
17 end
18 Ψ← Ψ\{(W in, items)}
19 end
20 if parent is empty then
21 // Run query as a data-parallel job
22 result ← runJob(query, Θ)
23 // Estimate error bounds (§III-D)
24 error ← estimateError(result)
25 write result± error
26 end
27 end
28 end

processes the query on the data items in Θ. A typical query
asks for some statistics such as sum and average of the data
streams, whose computation is discussed in §III-C. Finally, it
runs an error estimation mechanism (see §III-D) to compute
the error bounds for the approximate query result in the form
of output± error (lines 21-25).

The entire process repeats for each time interval as the
computation window slides [10], [11]. Note that the resource
budget may change across time intervals to adapt to user’s
requirements.

C. Statistics Computation

The root node conducts the sampling over the incoming
items on a time interval basis and computes statistics (such
as sum and average) as a query over those sampled items.
For any given sub-stream, the node may see multiple pairs of
the weight map and sampled items because all nodes in the
APPROXIOT sample items and update weights independently
with no coordination across them. As denoted in Algorithm 2,
Θ contains a series of such pairs across all sub-streams. The
root node can then compute an estimate of a sum for the sub-
stream as follows:

SUMi =
∑

(W out
i ,Ii)∈Θ

(
(

|Ii|∑
k=1

Ii,k) ·W out
i

)
(3)

where W out
i is a weight value and Ii is a set of items

associated with that weight value for sub-stream Si.

1 2 3 4w = 1 5 6

2 3 4w = 1.5

5 2w = 1.5

5w = 3

5

Interval u

3w = 3

3w = 3

Interval u+1

Time

A

B

C

A

B

C

Network

Network

Reservoir size, n = 4

Reservoir size, n = 1

Reservoir sampling

Interval vInterval v

w = 3

Interval x

5

3 4

n = 1

Fig. 3. Nodes A and B are sampling nodes that conduct sampling, and node
C is the root node that executes a query. Each node independently maintains
intervals. A node (e.g., A) receives sub-streams (only one sub-stream is shown
for brevity) and an interval of a sub-stream contains a series of items and
possibly a weight (w). After the reservoir sampling is applied, w is updated
based on Algorithm 1. For example, node B samples one out of the two items
when the input w is 1.5; thus, the updated w is 1.5 × 2 = 3. When items
arrive within an interval which is different from the interval the input weight
arrives, the prior input weight for that sub-stream is used; node B sees no
weight value associated with items 3 and 4 in the interval v + 1. Thus, the
node uses w = 1.5 and updates the output weight value (w = 1.5× 2 = 3).

Suppose there are in total X sub-streams {Si}Xi=1, the
approximate total sum of all items received from all sub-
streams (denoted as SUM∗) is:

SUM∗ =

X∑
i=1

SUMi (4)

Example. Figure 3 shows how each node individually samples
items from a sub-stream and updates its weight value. In the
figure, 6 items arrive within an interval at node A which has a
reservoir size of 4. After reservoir sampling, the node updates
the weight for the items based on the equation at line 14 in
Algorithm 1; thus, w = 1.5. Node A then forwards the weight
and sampled items to node B.

A weight and its associated items may arrive at different
intervals. For instance, in Figure 3, items 3 and 4 arrive at
node B within the interval v+1 while the weight value arrives
within the interval v. For the items 5 and 2, we simply apply
Algorithm 1. For the items 3 and 4, we take the weight value
(w = 1.5 in the figure) used within interval v for the same sub-
stream and apply the algorithm because the weight value is the
up-to-date weight for the sub-stream (as stated previously in
§III-B). Since the reservoir size is half of the number of items
in interval v + 1, the updated weight becomes 1.5 × 2 = 3;
the weight value and the sampled item (in this case, item 3)
are then forwarded to node C.

Lastly, Θ at root node C has two pairs: (3, {item 5}) and
(3, {item 3}). Suppose that the index of the item is its value.
Then, the estimated sum of the sub-stream is 3∗5+3∗3 = 24.

Statistical recreation of the original items. We consider
two cases: (i) single node and (ii) multiple nodes, in order
to discuss how to statistically recreate the original items from
the sample and weight map.

(i) Single node case. There is only one node which works
as root. All sources send their data streams to the root node.
Because the root node solely defines the interval in this setting,
there is only one element for each sub-stream in Θ. Thus,
Equation (3) is reduced to:

SUMi = (

|Ii|∑
k=1

Ii,k) ·W out
i (5)

where Ii,k denotes the value of the k-th item in set Ii.
Initially, when a source generates data items, there is no

weight map given to the root node; therefore, the weight of
each sub-stream is assumed to be 1 (i.e., W in

i = 1). From
Equation (2) and W in

i = 1, we essentially have W out
i = wi

or W out
i = 1. As a result, Equation (5) represents an unbiased

estimate of sub-stream Si as it implements the basic reservoir
sampling which is known to obtain a set of unbiased samples
from an input stream [12]. Note that, Algorithm 1 works
exactly the same way as the one in [9] in this case.

(ii) Multiple nodes case. We extend our notations for further
discussion. SUMi,j is an estimated sum of items in sub-stream
Si at node j. We redefine ci,j , wi,j , Ni,j , W out

i,j and Ii,j in
a similar fashion. We define an upstream path for sub-stream
Si as a path that items of Si are forwarded from the original
source to the root node. Let π(i, j) be a predecessor node (i.e.,
an immediate lower-level node) of node j on an upstream path
for sub-stream Si.

We consider a set of items of a sub-stream arriving at a
bottom/leaf node (i.e., the node contacted by data sources)
within an interval as the original data set (i.e., ground truth).
For instance, in Figure 3, node A is the bottom node and
items 1-6 form an original set. An original set can be split
into a number of (W out

i , Ii) pairs as items in the original
set arrive in different time intervals when they traverse nodes
in a logical tree. To facilitate our analysis only, we assume
that those (W out

i , Ii) pairs arrive at the root node within the
same interval. This assumption allows us to trace back the
original set represented by the (W out

i , Ii) pairs seen at the
root node. In practice, the APPROXIOT system works without
this assumption since the ground truth is unknown.

Let GTi,b be the sum of the original set seen at bottom node
b, and SUMi,r be the estimate at root node r. We now show
GTi,b ' SUMi,r.

GTi,b =

|Ii,b|∑
k=1

Ii,b,k (6)

where Ii,b,k is the k-th item from the original set at bottom
node b for sub-stream Si.

From Equation (3), SUMi,r can be simply rewritten as:

SUMi,r =
∑

(W out
i,r ,Ii,r)∈Θ

(
(

|Ii,r|∑
k=1

Ii,r,k) ·W out
i,r

)
(7)

The reservoir sampling executed at each node creates suffi-
cient randomness for the selected items. However, there is one

invariant — the estimate on the total number of items in the
original set should be correct. Suppose that the value of all
items is 1, i.e., Ii,b,k = 1 for all k. Then, GTi,b = |Ii,b| = ci,b
and SUMi,r =

∑
(W out

i,r ,Ii,r)∈Θ |Ii,r| · W out
i,r . Therefore, we

need to show that the following holds:∑
(W out

i,r ,Ii,r)∈Θ

|Ii,r| ·W out
i,r = ci,b. (8)

For this, it is necessary to show that W out
i,j · c̃i,j = W in

i,j ·ci,j
on node j where c̃i,j is the number of sampled items after the
reservoir sampling.

Proof: According to Algorithm 1,

W out
i,j =

{
W in
i,j · ci,j/Ni,j if ci,j > Ni,j

W in
i,j if ci,j ≤ Ni,j

(9)

If ci,j > Ni,j , c̃i,j = Ni,j . Then, W out
i,j · c̃i,j = W in

i,j ·
ci,j/Ni,j ·Ni,j = W in

i,j · ci,j . If ci,j ≤ Ni,j , c̃i,j = ci,j . Thus,
W out
i,j · c̃i,j = W in

i,j · ci,j . �
If there is no split of the sampled items as they traverse

nodes,
∑

(W out
i,r ,Ii,r)∈Θ |Ii,r|·W out

i,r is equivalent to |Ii,r|·W out
i,r .

Since |Ii,r| = c̃i,j , W out
i,r · c̃i,j = W in

i,j · ci,j . We also know that
W in
i,j · ci,j = W out

i,π(i,j) · c̃i,π(i,j). After we recursively rewrite
the previous quantity, we obtain W in

i,b · ci,b, because W in
i,b = 1,

W out
i,r · c̃i,j = ci,b.
If the items of Si from node π(i, j) are split across

m intervals at node j starting from interval u, c̃i,π(i,j) =∑u+m−1
t=u ci,j,t where ci,j,t is the number of items of Si

arriving at node j at interval t. Since W in
i,j = W out

i,π(i,j),
W out
i,π(i,j) · c̃i,π(i,j) = W in

i,j ·
∑m+u−1
t=u ci,j,t. Hence, the previous

recursion method can be applied here, too. As a result,
Equation (8) holds true even when the items of a sub-stream
are split across intervals at nodes.

D. Error Estimation

We now describe a method to estimate the accuracy of our
approximate results with rigorous error bounds. Suppose there
are X sub-streams {Si}Xi=1 composing the input stream. We
compute, at root node r, the approximate sum of all items
received from all sub-streams. As each sub-stream is sampled
independently, the variance of the approximate sum is:

V ar(SUM∗,r) =

X∑
i=1

V ar(SUMi,r) (10)

Further, as items are randomly selected across nodes for
a sample within each sub-stream, we can apply the random
sampling theory (central limit theorem) [13]. Hence, the
variance of the approximate sum is estimated as:

V̂ ar(SUM∗,r) =

X∑
i=1

(
ci,b · (ci,b − ζ) ·

s2
i,r

ζ

)
(11)

where ζ =
∑

(W out
i,r ,Ii,r)∈Θ |Ii,r|. From Equation (8), we can

obtain ci,b. In addition, si,r denotes the standard deviation of
the sub-stream Si’s sampled items at root node r:

s2
i,r =

1

ζ − 1
·
ζ∑
k=1

(Ii,r,k − ¯Ii,r)
2 (12)

where ¯Ii,r = 1
ζ ·
∑ζ
k=1 Ii,r,k.

Next, we show how we can similarly estimate the variance
of the approximate mean of all items received from all the X
sub-streams. The approximate mean can be computed as:

MEAN∗,r =
SUM∗,r∑X
i=1 ci,b

=

∑X
i=1 ci,b ·MEANi,r∑X

i=1 ci,b

=

X∑
i=1

(ϕi ·MEANi,r)

(13)

Here, ϕi =
ci,b∑X
i=1 ci,b

. Then, as each sub-stream is sampled
independently, according to the random sampling theory [13],
the variance of the approximate mean can be estimated as:

V̂ ar(MEAN∗,r) =

X∑
i=1

V ar(ϕi ·MEANi,r)

=

X∑
i=1

ϕ2
i · V ar(MEANi,r)

=

X∑
i=1

ϕ2
i ·
s2
i,r

ζ
· ci,b − ζ

ci,b

(14)

Error bound. We compute the error bound for the approx-
imate result based on the “68-95-99.7” rule [14]. According
to this rule, the approximate result is within one, two, and
three standard deviations away from the exact result with
probabilities of 68%, 95%, and 99.7%, respectively. The
standard deviation is computed by taking the square root of
the variance in Equation (11) and Equation (14), respectively,
for computing approximate sum and mean.

E. Distributed Execution

Our proposed algorithm naturally extends for distributed
execution as it does not require synchronization. Our straight-
forward design extension for parallelization is as follows: we
handle each sub-stream by a set of w worker nodes. Each
worker node samples an equal portion of items from this sub-
stream and generates a local reservoir of size no larger than
Ni/w, where Ni is the total reservoir size allocated for sub-
stream Si. In addition, each worker node maintains a local
counter to measure the number of its received items within a
concerned time interval for weight calculation. The rest of the
design remains the same.

IV. IMPLEMENTATION

We implemented APPROXIOT using Apache Kafka [15] and
its library Kafka Streams [16]. Figure 4 illustrates the high-
level architecture of our prototype, where the shaded boxes
represent the implemented modules. In this section, we first

Computation

Engine

(Kafka Streams)

Sampling

module

Error estimation

module

Sampling

parameters

Pub/Sub

module

Sampling

module

Analyst

Sample size

Sampled

data stream

Data stream

.........Input data streams

Kafka cluster

Kafka topics

Layers n]

Edge computing nodes

(sampling nodes)

Datacenter cluster (root node)

Sample size

Refined sample size

Sampled

data stream

Sampled

data stream

Query

and

budget

Approximate

output

+

error bound

Fig. 4. APPROXIOT architecture.

give a necessary background about Apache Kafka, and we next
present the implementation details.

A. Background

Apache Kafka [15] is a widely used scalable fault-tolerant
distributed pub/sub messaging platform. Kafka offers the re-
liable distributed queues called topics to receive input data
streams. Stream analytics systems can subscribe these topics
to retrieve and process data streams. We used Kafka to model
the layers in the edge computing topology, where the input
streams are pipelined across layers via pre-defined topics.

Recently, Kafka Streams [16] has been developed as a
library on top of Kafka to offer a high-level dataflow API
for stream processing. The key idea behind Kafka Streams
is that it considers an input stream as an append-only data
table (a log). Each arriving data item is considered as a row
appended to the table. This design enables Kafka Streams
to be a real-time stream processing engine, as opposed to
the batched based stream processing systems (e.g., Spark
Streaming [2]) that treat the input data stream as a sequence of
micro-batches. Furthermore, since Kafka Streams is built on
top of Kafka, it requires no additional cluster setup for a stream
processing system (e.g., Apache Flink [17], Storm [18]). For
these advantages, Kafka Streams is an excellent choice for our
prototype implementation.

The Kafka Streams library supports two sets of APIs [16]:
(i) High-Level Streams DSL (Domain Specific Language) API
to build a processing topology (i.e., DAG dataflow) and (ii)
Low-Level Processor API to create user-defined processors (a
processor is an operator in the processing topology).

B. APPROXIOT Implementation Details

At a high level (see Figure 4), the input data streams are
ingested to a Kafka cluster.
Edge computing nodes (sampling nodes). A sampling node
consumes an input stream from the Kafka cluster via the
Pub/Sub module by subscribing to a pre-defined topic. There-
after, the sampling module samples the input stream in an

online manner using the proposed sampling algorithm (§III).
Next, a producer is used to push the sampled data items to the
next layer in the edge computing network topology using the
Kafka topic of the next layer.

Datacenter cluster (root node). The root node receives the
sampled data streams from the final layer of sampling nodes.
First, it also makes use of the sampling module to take a
sample of the input. Thereafter, the computation engine of
Kafka Streams (High-Level Streams DSL processors) executes
the input query over the sampled data stream to produce an
approximate output. Finally, the error estimation module per-
forms the error estimation mechanism (see §III-D) to provide
a rigorous error bound for the approximate query result. In
addition, in the case the error bound of the approximate result
exceeds the desired budget of the user, an adaptive feedback
mechanism is activated to refine the sampling parameters at
all layers to improve the accuracy in subsequent runs. We next
describe in detail the implemented modules.

I: Pub/Sub module. The Pub/Sub module ensures the com-
munication between the edge computing layers. For that, we
made use of the High-Level Streams DSL API to create the
producer and consumer processors to send and retrieve data
streams through a pre-defined topic corresponding to the layer.

II: Sampling module. The sampling module implements the
algorithm described in §III. In particular, we implemented the
algorithm in a user-defined processor (i.e., sampling processor)
using the Low-Level API supported by Kafka. The sampling
processor works as a normal processor in the Kafka computing
topology to select input data items from the topics.

In addition, for the baseline comparison, we also imple-
mented a simple random sampling (SRS) algorithm into a user-
defined processor using the coin flip sampling algorithm [19].

III: Error estimation module. The error estimation module
computes the error bounds for the approximate output, which
is necessary for the user to interpret the accuracy of result. We
used the Apache Common Math library [20] to implement the
error estimation mechanism as described in §III-D.

V. EVALUATION: MICROBENCHMARKS

In this section, we present the evaluation results of APPROX-
IOT using microbenchmarks. In the next section, we describe
the evaluation results based on real-world datasets.

A. Experimental Setup

Cluster setup. We deployed the APPROXIOT system using a
cluster of 25 nodes. We used 15 nodes for the IoT deployment,
each equipped with two dual-core Intel Xeon E3-1220 v3
processors and 4GB of RAM, running Ubuntu 14.04. In the
deployment, we emulated a four-layer tree topology of an IoT
infrastructure which contains 8 source nodes producing the
input data stream, 4 nodes for the first edge computing layer, 2
nodes for the second edge computing layer, and one datacenter
node (the root node). For the communication between the
edge computing layers, we used a Kafka cluster using the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 40 60 80 90

A
c
c
u

ra
c
y
 l
o

s
s
 (

%
)

Sampling fraction (%)

ApproxIoT

SRS

(a) Gaussian distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 40 60 80 90

A
c
c
u

ra
c
y
 l
o

s
s
 (

%
)

Sampling fraction (%)

ApproxIoT

SRS

(b) Poisson distribution

Fig. 5. Accuracy loss vs sampling fraction. The accuracy loss of ApproxIoT
is at most 0.035% in (a) and 0.013% in (b), both of which are smaller than
the counterpart of SRS.

10 remaining nodes, each of which has 3-core Intel Xeon E5-
2603 v3 processors and 8GB of RAM, running Ubuntu 14.04.

To emulate a WAN environment, we used the tc (traffic
control) tool [21]. Based on the real measurements [22], the
round-trip delay times between two adjacent layers are set to
20 ms (between the source node and the first edge computing
layer), 40 ms (between the first layer and the second layer) and
80 ms (between the second layer and the datacenter node). In
the network, each link’s capacity is 1 Gbps. This WAN setting
remains the same across all the experiments we conducted
unless otherwise stated.
Synthetic data stream. We evaluated the performance of
APPROXIOT using synthetic input data streams with two
data distributions: Gaussian and Poisson. For the Gaussian
distribution, we generated four types of input sub-streams:
A (µ = 10, σ = 5), B (µ = 1000, σ = 50), C (µ =
10000, σ = 500) and D (µ = 100000, σ = 5000). For the
Poisson distribution, we used four types of input sub-streams:
A (λ = 10), B (λ = 100), C (λ = 1000) and D (λ = 10000).
Metrics. We evaluated the performance of APPROXIOT with
the following three metrics: (i) Throughput defined as the
number of data items processed per second; (ii) Accuracy
loss defined as |approx − exact|/exact, where approx and
exact denote the results produced by APPROXIOT and a
native execution without sampling, respectively; and lastly,
(iii) Latency defined as the end-to-end latency taken by a data
item from the source until it is processed in the datacenter.
Methodology. We used the source nodes to produce and tune
the rate of the input data streams such that the datacenter
node in APPROXIOT was saturated. This input rate was used
for three approaches: (i) APPROXIOT, (ii) SRS-based system
employing Simple Random Sampling (in short, SRS), and (iii)
Native execution. In the native execution approach, the input
data streams are transferred from the source nodes all the way
to the datacenter without any sampling at the edge nodes.

B. Effect of Varying Sampling Fractions

Accuracy. We first evaluate the accuracy loss of APPROXIOT
and the SRS-based system. We use both Gaussian and Poisson
distributions while we vary the sampling fractions.

Figure 5 shows that APPROXIOT achieves much higher
accuracy than the SRS-based system for both datasets. In

 0

 50

 100

 150

 10 20 40 60 80 100

T
h

ro
u

g
h

p
u

t(
K

)#
it

e
m

s
/s

Sampling fraction (%)

ApproxIoT
SRS

Native

Fig. 6. Throughput vs sampling frac-
tion.

 0

 20

 40

 60

 80

 100

 10 20 40 60 80 100

B
W

 s
a

v
in

g
 r

a
te

 (
%

)

Sampling fraction (%)

ApproxIoT
SRS

Fig. 7. Bandwidth saving vs sampling
fraction.

particular, when the sampling fraction is 10%, the accuracy
of APPROXIOT is 10× and 30× higher than SRS’s accuracy
for Gaussian and Poisson datasets, respectively. This higher
accuracy of APPROXIOT is because APPROXIOT ensures data
items from each sub-stream are selected fairly by leveraging
stratified sampling. Here, the absolute accuracy loss in SRS
may look insignificant, but the estimation of SRS can be
completely useless in the presence of a skewed distribution
of arrival rates of the input streams, which we show in §V-E.

Throughput. We next evaluate the throughput of APPROXIOT
in comparison with the SRS-based system.

Figure 6 depicts the throughput comparison between AP-
PROXIOT and SRS. APPROXIOT achieves a similar throughput
as SRS due to the fact that the proposed sampling mechanism,
just like SRS, requires no synchronization between workers
(CPU cores) to take samples from the input data stream. For
instance, with the sampling fraction of 89%, the throughput
of APPROXIOT is 12429 items/s, and that of SRS is 12547
items/s with the sampling fraction of 90%. Note that, as we
perform sampling across different layers, we cannot ensure
that two algorithms have the same sampling fraction.

Figure 6 also shows that both APPROXIOT and SRS have
a similar throughput compared to the native execution even
when the sampling fraction is 100%. APPROXIOT, SRS and
the native execution achieve 11003 items/s, 11046 items/s
and 11134 items/s, respectively. This demonstrates the low
overhead of our sampling mechanism.

Network bandwidth. In addition, sampling ensures that AP-
PROXIOT (and SRS, too) significantly saves the network
bandwidth between the computing layers as shown in Figure 7;
the network resource is fully utilized in this case, so the
sampling fraction of 10% means that our system only requires
10% of the total capacity (e.g., 100 Mbps out of 1 Gbps). Thus,
even when the network resource is limited, APPROXIOT can
function effectively.

Latency. We set the window size of APPROXIOT to one
second. Figure 8 shows that APPROXIOT incurs a similar
latency compared to the SRS-based system. In addition, when
the sampling fraction of APPROXIOT is 10%, APPROXIOT
achieves a 6× speedup with respect to the native execution.

 0

 20

 40

 60

 80

 10 20 40 60 80 100

L
a

te
n

c
y
 (

s
e

c
)

Sampling fraction (%)

SRS
Native

ApproxIoT

Fig. 8. Latency vs sampling fraction.
APPROXIOT uses 1 second window.

 9

 10

 11

 12

 0.5 1 2 3 4

L
a

te
n

c
y
 (

s
e

c
)

Window size (sec)

ApproxIoT
SRS

Fig. 9. Latency vs window size. Sam-
pling fraction is set to 10%.

C. Effect of Varying Window Sizes

The previous window size of one second may look arbitrary.
Thus, we evaluate the impact of varying window sizes on the
latency of APPROXIOT. We set a fixed sampling fraction of
10% and measure the latency of the evaluated systems while
we vary window sizes. Figure 9 shows the latency compar-
ison between APPROXIOT and the SRS-based system. The
latency of APPROXIOT increases as the window size increases
whereas the latency of the SRS-based system remains the
same. This is because the SRS-based system does not require
a window for sampling the input streams in any of the edge
computing layers. Therefore, like in any other window-based
streaming systems [2], [17], the operators have to set small
window sizes to meet the low latency requirement.

D. Effect of Fluctuating Input Rates of Sub-streams

We next evaluate the impact of fluctuating rates of sub-
streams on the accuracy of APPROXIOT. We keep the sam-
pling fraction of 60% and measure the accuracy loss of AP-
PROXIOT and the SRS-based system. Figures 10(a) and 10(b)
present the accuracy loss of APPROXIOT and SRS with
Gaussian distribution and Poisson distribution datasets. For
these experiments, we create three different settings, in each
of which four sub-streams A, B, C and D have different arrival
rates. A setting is expressed as (A : B : C : D). For example,
(50k : 25k : 12.5k : 625) means that the input rates of sub-
streams A, B, C and D are 50k items/s, 25k items/s, 12.5k
items/s, and 625 items/s, respectively.

Both figures show that the accuracy of these approaches
improves proportionally to the input rate of the sub-stream
D since data items of this sub-stream have significant values
compared to other sub-streams. Across all settings, APPROX-
IOT achieves higher accuracy than the SRS-based system. For
instance, under Setting1 in Figure 10(a), the accuracy loss of
SRS-based system is 5.5× higher than that of APPROXIOT;
while under the same setting in Figure 10(b), the accuracy of
APPROXIOT is 74× higher than that of the SRS-based system.
The higher accuracy of APPROXIOT against SRS is due to
the similar reason that we already explained: the SRS-based
system may overlook the sub-stream D in which there are
only a few data items but their values are significant, whereas
APPROXIOT is based on stratified sampling, and therefore, it
captures all of the sub-streams well.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Setting1 Setting2 Setting3

A
c
c
u

ra
c
y
 l
o

s
s
 (

%
)

Input rates of data streams

ApproxIoT

SRS

(a) Gaussian distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Setting1 Setting2 Setting3

A
c
c
u

ra
c
y
 l
o

s
s
 (

%
)

Input rates of data streams

ApproxIoT

SRS

(b) Poisson distribution

 0

 20

 40

 60

 80

 100

 120

 10 20 40 60 80 90

A
c
c
u

ra
c
y
 l
o

s
s
 (

%
)

Sampling fraction (%)

ApproxIoT

SRS

(c) Extremely skewed input data stream
Fig. 10. The accuracy comparison between APPROXIOT and the SRS-based system with different arrival rates of sub-streams. For (a) and (b), the arrival
rates (items/sec) of the four input sub-streams A, B, C, and D are the following: Setting1: (50k : 25k : 12.5k : 625), Setting2: (25k : 25k : 25k : 25k)
and Setting3: (625 : 12.5k : 25k : 50k). For (c), Poisson distribution is used; A, B, C and D have λ = 10, 100, 1000 and 10000000, respectively; the
sub-stream A accounts for 80% of all data items while the sub-streams B, C and D account for only 19.89%, 0.1%, and 0.01%, respectively. The average
accuracy loss of APPROXIOT is at most 0.056% in (a), 0.014% in (b) and 0.035% in (c).

E. Effect of Skew in Input Data Stream

In this experiment, we analyze the effect of skew in the
input data stream. We create a sub-stream that dominates the
other sub-streams in terms of the number of data items. In
particular, we generate an input data stream that consists of
four sub-streams following a Poisson distribution, namely A
(λ = 10), B (λ = 100), C (λ = 1000), and D (λ = 10000000).
In this input data stream, the sub-stream A accounts for 80%
of all data items, whereas the sub-streams B, C and D represent
only 19.89%, 0.1%, and 0.01%, respectively.

Figure 10(c) shows that APPROXIOT achieves a signifi-
cantly higher accuracy than the SRS-based system. With the
sampling fraction of 10%, the accuracy of APPROXIOT is
2600× higher than the accuracy of SRS-based system. The
reason for this is that APPROXIOT considers each sub-stream
fairly — none of them is ignored when samples are taken.
Meanwhile, the SRS-based system may not yield sufficient
numbers of data items for each sub-stream. Interestingly,
as highlighted in Figure 10(c), the SRS-based system may
overestimate the sum of the input data stream since it by
chance mainly considers sub-stream D and ignores others (see
evaluation results with the sampling fraction of 10%).

VI. EVALUATION: REAL-WORLD DATASETS

In this section, we evaluate APPROXIOT using two real-
world datasets: (i) New York taxi ride and (ii) Brasov pollution
dataset. We used the same cluster setup as described in §V-A.

A. New York Taxi Ride Dataset

Dataset. The NYC taxi ride dataset has been published at the
DEBS 2015 Grand Challenge [23]. This dataset consists of the
ride information of 10, 000 taxies in New York City in 2013.
We used the dataset from January 2013.

Query. We performed the following query: What is the total
payment for taxi fares in NYC at each time window?

Results. Figure 11(a) shows that the accuracy of APPROXIOT
improves with the increase of sampling fraction. With the
sampling fraction of 10%, the accuracy loss of APPROXIOT is
0.1%, whereas with the sampling fraction of 47%, the accuracy

 0

 0.04

 0.08

 0.12

 0.16

 10 20 40 60 80 90

A
c
c
u

ra
c
y
 l
o

s
s
 (

%
)

Sampling fraction (%)

Brasov Pollution
NYC Taxi

(a) Accuracy loss vs sampling frac-
tion

 0

 50

 100

 150

 10 20 40 60 80 100

Native throughput
 for two datasets

T
h

ro
u

g
h

p
u

t(
K

)#
it

e
m

s
/s

Sampling fraction (%)

Brasov Pollution
NYC Taxi

(b) Throughput vs sampling fraction

Fig. 11. The accuracy loss and throughput of APPROXIOT in processing the
two real-world datasets. The flat line in (b) shows the throughput of the native
approach for processing the two datasets; only one line is presented because
there is a marginal difference between processing the two datasets.

loss is only 0.04%. In addition, we measure the throughput
of APPROXIOT with varying sampling fractions. Figure 11(b)
depicts that the throughput of APPROXIOT reduces when the
sampling fraction increases. With the sampling fraction of
10%, the throughput of APPROXIOT is 122,199 items/sec,
which is roughly 10% higher than the native execution.

B. Brasov Pollution Dataset

Dataset. The Brasov pollution dataset [24] consists of the
pollution measurements (e.g., air quality index) in Brasov,
Romania from August 2014 to October 2014. Each sensor
provides a measurement result every 5 minutes.

Query. We performed the following query: What is the total
pollution values of particulate matter, carbon monoxide, sulfur
dioxide and nitrogen dioxide in every time window?

Results. Figure 11(a) depicts the accuracy loss of APPROXIOT
in processing the pollution dataset with varying sampling
fractions. With the sampling fractions of 10% and 40%,
the accuracy loss of APPROXIOT are 0.07% and 0.02%,
respectively. The accuracy loss in processing this dataset has
a similar but lower curve as for the NYC taxi ride dataset.
The reason is that the values of data items in Brasov pollution
dataset are more stable than in NYC tax ride dataset.

Figure 11(b) presents the throughput of APPROXIOT with
different sampling fractions. With the sampling fraction of
10%, APPROXIOT achieves a 9× higher throughput than the
native execution. The throughputs of processing both the NYC
taxi ride dataset and the pollution dataset are similar.

VII. RELATED WORK

With the ability to enable a systematic trade-off between
accuracy and efficiency, approximate computing has been
explored in the context of distibuted data analytics [25],
[26], [27], [28], [29], [9]. In this context, sampling-based
techniques are properly the most widely used for approximate
data analytics [25], [26], [27]. These systems show that it is
possible to leverage the benefits of approximate computing
in the distributed big data analytics settings. Unfortunately,
these systems are mainly targeted towards batch processing,
where the input data remains unchanged during the course
of sampling. Therefore, these systems cannot cater to stream
analytics, which requires real-time processing of data streams.

To overcome this limitation, IncApprox [28], and
StreamApprox [9], [30] have been proposed for approximate
stream analytics. IncApprox introduces an online “biased sam-
pling” algorithm that uses self-adjusting computation [31] to
produce incrementally updated approximate results [32], [33],
[34], [35]. Meanwhile, StreamApprox handles the fluctuation
of input streams by using an online adaptive stratified sampling
algorithm. These systems demonstrate that it’s also possible
to trade the output quality for efficiency in stream process-
ing. Unfortunately, these systems target processing input data
streams within a centralized datacenter, where the online
sampling is carried out at a centralized stream aggregator.
In APPROXIOT, we designed a distributed online sampling
algorithm for the IoT setting, where the sampling is carried
out in a truly distributed fashion at multiple levels using the
edge computing resources.

Recently, in the context of IoT, edge computing has emerged
as a promising solution to reduce latency in data analytics
systems [36], [37]. In edge computing, a part of computation
and storage are performed at the Internet’s edge closer to
IoT devices or sensors. By moving either whole or partial
computation to the edge, edge computing allows to achieve not
only low latency but also significant reduction in bandwidth
consumption [37]. Several works deploy sampling and filtering
mechanisms at sources (sensor nodes) to further optimize
communication costs [38], [39]. However, the proposed sam-
pling mechanisms in these works are “snapshot sampling”
techniques which are used to take input data stream every
certain time interval. PrivApprox [29], [40] proposed a mar-
riage of approximate computing based on sampling with the
randomized response for improved performance and users’
privacy. As opposed, in APPROXIOT, we leverage sampling-
based techniques at the edge to further reduce the latency and
bandwidth consumption in processing large-scale IoT data.
In detail, we design an online adaptive random sampling
algorithm, and perform it not only at the root node, but also
at all layers of the computing topology.

Finally, it is worth to mention that there has been a
surge of research in geo-distributed data analytics in multi-
datacenters [41], [42], [43]. However, these system focus on
improving the performance for batch processing in the context
of data centers, and are not designed for edge computing. In
APPROXIOT, we design an approximation technique for real-
time stream analytics in a geo-distributed edge computing.

VIII. CONCLUSION

The unprecedentedly huge volume of data in the IoT era
presents both opportunities and challenges for building data-
driven intelligent services. The current centralized computing
model cannot cope with low-latency requirement in many
online services, and it is also a wasteful computing medium
in terms of networking, computing, and storage infrastruc-
ture for handling IoT-driven data streams across the globe.
In this paper, we explored a radically different approach
that exploits approximate computing paradigm for a globally
distributed IoT environment. We designed and implemented
APPROXIOT, a stream analytics system for IoT that achieves
efficient resource utilization, and also adapts to the varying
requirements of analytics applications and constraints in the
underlying computing/networking infrastructure. The nodes in
the system run a weighted hierarchical sampling algorithm
independently without any cross-node coordination, which
facilitates parallelization, thereby making APPROXIOT scal-
able. Our evaluation with synthetic and real-world datasets
demonstrates that APPROXIOT achieves 1.3×—9.9× higher
throughput than the native stream analytics execution and
3.3×—8.8× higher accuracy than a simple random sampling
scheme under the varying sampling fractions of 80% to 10%.

Limitations and future work. While APPROXIOT approach
is quite useful to achieve desired properties, our current system
implementation has the following limitations.

First, APPROXIOT currently supports only approximate
linear queries. We plan to extend the system to support more
complex queries [44], [27] such as joins, top-k, etc., as part
of the future work.

Second, our current implementation relies on manual ad-
justment of user’s query budget to the required sampling
parameters. As part of the future work, we plan to implement
an automated cost function to tune the sampling parameters
for the required system performance and resource utilization.

Lastly, we have evaluated APPROXIOT using a small
testbed. As part of the future work, we plan to extend our
system evaluation via deploying APPROXIOT over Azure
Stream Analytics [45] to further evaluate the performance of
our system in a real IoT infrastructure.

The source code of APPROXIOT is publicly available: https:
//ApproxIoT.github.io/ApproxIoT/

ACKNOWLEDGMENT

We thank our shepherd Grace Lewis for her comments
and suggestions. This work was in part supported by EPSRC
grants EP/L02277X/1, EP/N033981/1, Alan Turing Institute,
and Amazon AWS Research Grant.

https://ApproxIoT.github.io/ApproxIoT/
https://ApproxIoT.github.io/ApproxIoT/

REFERENCES

[1] Cisco, “Cisco Global Cloud Index: Forecast and Methodology,” in Cisco
White Paper, 2016.

[2] “Apache Spark Streaming,” http://spark.apache.org/streaming, accessed:
April, 2018.

[3] Garcia Lopez et al., “Edge-centric computing: Vision and challenges,”
in Proceedings of SIGCOMM CCR, 2015.

[4] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo
sampling methods for bayesian filtering,” Statistics and Computing,
2000.

[5] S. Natarajan, Imprecise and Approximate Computation. Kluwer Aca-
demic Publishers, 1995.

[6] M. Al-Kateb and B. S. Lee, “Stratified reservoir sampling over hetero-
geneous data streams,” in Proceedings of the 22nd International Con-
ference on Scientific and Statistical Database Management (SSDBM),
2010.

[7] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software (TOMS), 1985.

[8] S. Lohr, Sampling: design and analysis, 2nd Edition. Cengage Learning,
2009.

[9] D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and T. Strufe,
“StreamApprox: Approximate Computing for Stream Analytics,” in
Proceedings of the International Middleware Conference (Middleware),
2017.

[10] P. Bhatotia, U. A. Acar, F. P. Junqueira, and R. Rodrigues, “Slider:
Incremental Sliding Window Analytics,” in Proceedings of the 15th
International Middleware Conference (Middleware), 2014.

[11] P. Bhatotia, M. Dischinger, R. Rodrigues, and U. A. Acar, “Slider: Incre-
mental Sliding-Window Computations for Large-Scale Data Analysis,”
MPI-SWS, Tech. Rep. MPI-SWS-2012-004, 2012, http://www.mpi-sws.
org/tr/2012-004.pdf.

[12] C. C. Aggarwal, “On biased reservoir sampling in the presence of stream
evolution,” in Proceedings of the 32nd International Conference on Very
Large Data Bases, 2006.

[13] S. K. Thompson, Sampling. Wiley Series in Probability and Statistics,
2012.

[14] F. Pukelsheim, “The three sigma rule,” in The American Statistician,
1994.

[15] “Kafka - A high-throughput distributed messaging system,” http://kafka.
apache.org, accessed: April, 2018.

[16] “Kafka Streams API,” https://kafka.apache.org/documentation/streams/,
accessed: April, 2018.

[17] “Apache Flink,” https://flink.apache.org/, accessed: April, 2018.
[18] “Apache Storm,” http://storm-project.net/, accessed: May, 2017.
[19] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra, “Scalable Approx-

imate Query Processing with the DBO Engine,” ACM Transactions of
Database Systems (TODS), 2008.

[20] C. Math, “The Apache Commons Mathematics Library,” http://
commons.apache.org/proper/commons-math, accessed: May, 2017.

[21] B. Hubert et al., “Linux advanced routing & traffic control howto,”
setembro de, 2002.

[22] “IP Latency Statistics,” http://www.verizonenterprise.com/about/
network/latency/, accessed: April, 2018.

[23] Z. Jerzak and H. Ziekow, “The debs 2015 grand challenge,” in Proceed-
ings of the 9th ACM International Conference on Distributed Event-
Based Systems (DEBS), 2015.

[24] M. I. Ali, F. Gao, and A. Mileo, “Citybench: A configurable benchmark
to evaluate rsp engines using smart city datasets,” in In proceedings of
14th International Semantic Web Conference (ISWC), 2015.

[25] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“BlinkDB: Queries with Bounded Errors and Bounded Response Times
on Very Large Data,” in Proceedings of the ACM European Conference
on Computer Systems (EuroSys), 2013.

[26] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “Approx-
Hadoop: Bringing Approximations to MapReduce Frameworks,” in
Proceedings of the Twentieth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS),
2015.

[27] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaud-
huri, and B. Ding, “Quickr: Lazily Approximating Complex Ad-Hoc
Queries in Big Data Clusters,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2016.

[28] D. R. Krishnan, D. L. Quoc, P. Bhatotia, C. Fetzer, and R. Rodrigues,
“IncApprox: A Data Analytics System for Incremental Approximate
Computing,” in Proceedings of the 25th International Conference on
World Wide Web (WWW), 2016.

[29] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe,
“PrivApprox: Privacy-Preserving Stream Analytics,” in Proceedings of
the 2017 USENIX Annual Technical Conference (USENIX ATC), 2017.

[30] D. L. Quoc, R. Chen, P. Bhatotia, C. Fetze, V. Hilt, and T. Strufe,
“Approximate Stream Analytics in Apache Flink and Apache Spark
Streaming,” CoRR, vol. abs/1709.02946, 2017.

[31] P. Bhatotia, “Incremental parallel and distributed systems,” Ph.D. disser-
tation, Max Planck Institute for Software Systems (MPI-SWS), 2015.

[32] P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder: GPU-Accelerated
Incremental Storage and Computation,” in Proceedings of USENIX
Conference on File and Storage Technologies (FAST), 2012.

[33] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini,
“Incoop: MapReduce for Incremental Computations,” in Proceedings of
the ACM Symposium on Cloud Computing (SoCC), 2011.

[34] P. Bhatotia, A. Wieder, I. E. Akkus, R. Rodrigues, and U. A. Acar,
“Large-scale incremental data processing with change propagation,” in
Proceedings of the Conference on Hot Topics in Cloud Computing
(HotCloud), 2011.

[35] P. Bhatotia, P. Fonseca, U. A. Acar, B. Brandenburg, and R. Rodrigues,
“iThreads: A Threading Library for Parallel Incremental Computation,”
in proceedings of the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2015.

[36] M. Satyanarayanan, “The emergence of edge computing,” Computer,
2017.

[37] H. Chang, A. Hari, S. Mukherjee, and T. V. Lakshman, “Bringing the
cloud to the edge,” in Proceedings of the IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2014.

[38] J. Traub, S. Breß, T. Rabl, A. Katsifodimos, and V. Markl, “Optimized
on-demand data streaming from sensor nodes,” in Proceedings of the
2017 Symposium on Cloud Computing (SoCC), 2017.

[39] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “AdaM: An adaptive
monitoring framework for sampling and filtering on IoT devices,” in
2015 IEEE International Conference on Big Data (Big Data), 2015.

[40] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe,
“Privacy preserving stream analytics: The marriage of randomized
response and approximate computing,” https://arxiv.org/abs/1701.05403,
2017. [Online]. Available: https://arxiv.org/abs/1701.05403

[41] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLARINET:
Wan-aware optimization for analytics queries,” in Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2016.

[42] K. Kloudas, M. Mamede, N. Preguiça, and R. Rodrigues, “Pixida: Opti-
mizing Data Parallel Jobs in Wide-area Data Analytics,” in Proceedings
of the International Conference on Very Large Data Bases (VLDB),
2015.

[43] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B.
Gibbons, and O. Mutlu, “Gaia: Geo-Distributed Machine Learning Ap-
proaching LAN Speeds,” in Proceedings of the 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2017.

[44] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, “Processing com-
plex aggregate queries over data streams,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD),
2002.

[45] “Azure Stream Analytics,” https://docs.microsoft.com/en-
us/azure/stream-analytics/stream-analytics-edge, accessed: April,
2018.

http://spark.apache.org/streaming
http://www.mpi-sws.org/tr/2012-004.pdf
http://www.mpi-sws.org/tr/2012-004.pdf
http://kafka.apache.org
http://kafka.apache.org
https://kafka.apache.org/documentation/streams/
https://flink.apache.org/
http://storm-project.net/
http://commons. apache. org/proper/commons-math
http://commons. apache. org/proper/commons-math
http://www.verizonenterprise.com/about/network/latency/
http://www.verizonenterprise.com/about/network/latency/
https://arxiv.org/abs/1701.05403
https://arxiv.org/abs/1701.05403

	Introduction
	Overview and Background
	System Overview
	Technical Building Blocks
	Stratified Sampling
	Reservoir Sampling

	Design
	Basic Operation: Weighted Hierarchical Sampling
	Putting It Together
	Statistics Computation
	Error Estimation
	Distributed Execution

	Implementation
	Background
	ApproxIoT Implementation Details

	Evaluation: Microbenchmarks
	Experimental Setup
	Effect of Varying Sampling Fractions
	Effect of Varying Window Sizes
	Effect of Fluctuating Input Rates of Sub-streams
	Effect of Skew in Input Data Stream

	Evaluation: Real-world Datasets
	New York Taxi Ride Dataset
	Brasov Pollution Dataset

	Related Work
	Conclusion
	References

